Press "Enter" to skip to content

Как работает гидротрансформатор?

Большинство современных автомобилей оснащено двигателями внутреннего сгорания (ДВС). Одним из недостатков ДВС по сравнению с электродвигателем является то, что он не запускается под нагрузкой, и ему требуется внешнее пусковое устройство (электростартер). Следовательно, чтобы избежать остановки двигателя на неподвижном автомобиле, нам необходимо отсоединить двигатель от колес.

На автомобиле с механической коробкой передач (МКПП) отключение двигателя можно выполнить двумя способами:

  • нажатием педали сцепления
  • выбрав нейтральную передачу с помощью рычага переключения передач

На автомобиле с автоматической коробкой передач (АКПП) отключение двигателя от трансмиссии происходит автоматически, без вмешательства водителя. Это возможно благодаря принципу работы гидротрансформатора.

Автоматическая коробка передач с гидротрансформатором

Гидротрансформатор (он же преобразователь крутящего момента) расположен между двигателем внутреннего сгорания и коробкой передач. Автоматическая коробка передач внутри корпуса состоит из трех основных частей: гидротрансформатора, планетарной коробки передач и электрогидравлического модуля управления.

Коленчатый вал ДВС механически связан с гидротрансформатором. Внутри гидротрансформатора мощность двигателя передается на коробку передач гидродинамически. Когда гидротрансформатор не заблокирован, механическая связь между входом (двигатель) и выходом (коробка передач) отсутствует.

Чтобы лучше понять, как работает гидротрансформатор, давайте рассмотрим следующий пример. Что произойдет, если у вас есть два настольных электрических вентилятора, расположенных друг напротив друга (как на изображении ниже), и один из них работает?

Гидротрансформатор - принцип работы

Левый вентилятор питается от сети электрическим током. Во время вращения он создает поток воздуха. Воздушный поток попадет в правый вентилятор (без питания), который начнет вращаться. Мощность передается от левого вентилятора к правому вентилятору через рабочее тело (в данном случае воздух). Очевидно, что эффективность этой системы очень низкая, так как много воздуха будет рассеиваться вокруг лопастей правого вентилятора.

Тот же принцип применяется к гидротрансформатору, но с некоторыми отличиями. В случае преобразователя крутящего момента оба «вентилятора» расположены очень близко друг к другу, чтобы минимизировать потери мощности. Рабочая среда в данном случае жидкость (масло АКПП). Кроме того, между двумя «вентиляторами» есть еще один компонент, который перенаправляет поток жидкости, чтобы минимизировать потери и усиливает передаваемый крутящий момент.

Гидротрансформатор - основные компоненты

«Вентилятор», который вырабатывает энергию, называется крыльчаткой, и он механически соединен с коленчатым валом двигателя. «Вентилятор», получающий гидравлическую энергию, называется турбиной, и он механически связан с входным валом коробки передач. Между рабочим колесом и турбиной находится статор, который перенаправляет поток масла. Объем, созданный этими компонентами, заполнен маслом.

Когда ДВС работает на холостом ходу, вращение крыльчатки «выбрасывает» масло в турбину. Поскольку частота вращения двигателя низкая, кинетической энергии движущегося масла недостаточно для привода транспортного средства. Передается небольшой крутящий момент, который называется тормозным моментом.

Момент сопротивления увеличивается, если вязкость масла увеличивается (при низкой температуре). Крутящий момент сопротивления заставляет автомобиль «ползать». Это означает, что, когда селектор переключения передач находится в режиме движения (D), при отпущенной педали акселератора и тормоза, тормозной момент немного перемещает автомобиль. Если водитель нажмет на педаль тормоза, транспортное средство остановится, поскольку тормозной момент незначителен по сравнению с тормозным моментом на колесах.

Когда водитель нажимает на педаль акселератора, частота вращения двигателя увеличивается. Рабочее колесо будет вращаться быстрее и увеличит кинетическую энергию масла. Турбина получит больше энергии, что приведет к передаче большего крутящего момента на коробку передач.

Гидротрансформатор - схема

На схеме выше мы можем легко различить компоненты гидротрансформатора. Рабочее колесо (зеленое) соединено с двигателем, а турбина (желтая) — с первичным валом коробки передач. Статор (синий), как следует из названия, большую часть времени является статическим (фиксированным).

Движение потока масла в гидротрансформаторе состоит из двух компонентов:

  • вращение вокруг центральной оси вместе с рабочим колесом и турбиной
  • вращение (красные стрелки) вокруг радиального центра гидротрансформатора

Вращательное движение — это переход жидкости от рабочего колеса к турбине, статору и обратно к рабочему колесу.

Статор гидротрансформатора

Между рабочим колесом гидротрансформатора и турбиной происходит постоянное скольжение. Это означает, что они вращаются с разной скоростью. Соотношение между скоростью турбины и скоростью крыльчатки называется передаточным числом преобразователя крутящего момента. Передаточное число равно 0, когда турбина статична и рабочее колесо вращается, и 1, когда обе вращаются с одинаковой скоростью.

Гидротрансформатор также имеет передаточное число. Это соотношение, на которое входной крутящий момент (двигателя) умножается перед передачей на коробку передач. Максимальное значение передаточного числа (около 2,3–3,0), когда передаточное число составляет 0,0, и минимальное (1,0), когда передаточное число выше 0,85–0,9.

Статор зафиксирован до тех пор, пока между рабочим колесом и турбиной имеется значительное скольжение. Когда скорости близки друг к другу, когда передаточное число составляет около 0,85–0,9; направление жидкости изменяется, и статор также начинает вращаться. Это возможно, потому что статор установлен на ходовой механизм.

Гидротрансформатор - муфта блокировки

Гидротрансформатор также имеет довольно низкий КПД. Поскольку он имеет постоянное скольжение, существует большое трение между рабочей жидкостью (маслом) и механическими компонентами (крыльчатка, турбина и статор). Эффективность минимальна (ниже 10%), когда передаточное число близко к 0 и достигает пика 85 — 90% при передаточном числе около 0,85.

Для повышения эффективности преобразователя крутящего момента, когда скольжение между крыльчаткой и турбиной относительно невелико, преобразователь крутящего момента блокируется. Это возможно за счет использования муфты блокировки, которая механически связывает рабочее колесо с турбиной. Таким образом, больше нет трения между маслом и компонентами, а мощность двигателя механически передается на коробку передач.

Гидротрансформатор - гаситель колебаний муфты блокировки

Гидротрансформатор блокируется обычно на более высоких передачах (выше 2-й) или когда скорость автомобиля превышает 20 км / ч. Когда коробка передач выполняет переключение передач, муфта блокировки переводится в состояние проскальзывания, что помогает гасить колебания трансмиссии.

Подобно сцеплению в механической коробке передач, муфта блокировки имеет гаситель колебаний, который гасит колебания во время фазы блокировки гидротрансформатора.

Гидротрансформатор является соединительным устройством по умолчанию в большинстве эпициклоидных автоматических трансмиссий (АКПП), а также в некоторых бесступенчатых трансмиссиях (на английском CVT). Основными характеристиками гидротрансформатора являются автоматическое отключение двигателя от трансмиссии при низких оборотах двигателя, усиление крутящего момента и гашение вибрации (за счет гидродинамической передачи мощности).

Ссылочка на видео, где очень наглядно объясняется принцип работы гидротрансформатора:

https://www.youtube.com/watch?v=Lx2GFwsbypM

Оставьте комментарий

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *